179. Molecular Polarisability: the Apparent Polarities and Molar Kerr Constants of Seven Quinones.

By R. J. W. Le Fèvre, (Mrs.) A. Sundaram, and K. M. S. Sundaram.
The molar Kerr constants observed for p-benzoquinone, chloranil, and anthraquinone can be explained consistently with the Sutton-Coop treatment of anomalous apparent polarity, if in each of these centrosymmetric molecules the ratios of the principal electrostatic and electro-optical polarisabilities are not uniform. Satisfactory predictions of molar Kerr constants for phenanthraquinone, acenaphthaquinone, and camphorquinone can be based on previously determined bond anisotropies and conventional intervalency angles. A permanent moment acting across the 2,3 -link is indicated in 1,4 -naphthaquinone, analogous to that supposed by Hampson and Weissberger in 1,4-dichloronaphthalene.

THE problem of explaining the "anomalous" apparent polarities of benzoquinone ${ }^{1-3}$ and other ${ }^{4}$ centrosymmetric molecules has lately been revived by Paoloni ${ }^{5}$ who, after reviewing relevant publications before 1958 (including papers by Kofod, ${ }^{6}$ Meredith et al., ${ }^{7}$

[^0]Jenkins, ${ }^{8}$ Frank and Sutton, ${ }^{9}$ and Coop and Sutton, ${ }^{10} X$-ray studies by Robertson, ${ }^{11}$ and electron diffraction measurements by Swingle ${ }^{12}$ and by Kimura and Shibata ${ }^{13}$) comments that, although the experimental evidence at present available favours a planar structure of benzoquinone, the possibility of small deviations from planarity cannot be ruled out. Le Fèvre and associates ${ }^{14,15}$ have accepted the concept of vibration polarisation ever since it was first suggested by Coop and Sutton, ${ }^{\mathbf{1 0}}$ and therefore have not especially sought for signs of slow or permanent distortions among this " anomalous " group of compounds. Accordingly, the observation that solutions of benzoquinone in benzene showed dielectric losses not detectably greater than those of benzene alone was recorded without remark, ${ }^{15}$ and preliminary findings (by Mrs. C. G. Le Fèvre) that the same solute very slightly raised the Kerr effect of benzene were left undeveloped.

Charney ${ }^{16}$ recently reported experiments to test Paoloni's proposal ${ }^{5}$ that, under the external electric field used in dielectric-constant determination, the electron clouds around the oxygen atoms in benzoquinone can be deformed to create a charge dissymmetry much larger than that associated with normal electronic polarisation, so that a planar arrangement of the nuclei may possess a dipole moment responsible for " substantial molecular orientation in an electric field." Inter alia, Charney, therefore compared the Kerr constants of benzene and benzoquinone solutions. He states that " within the limits of precision of the measurements" the birefringences are the same. In view of the slightly different exploratory indications mentioned above, further work seemed justified; the enquiry has also been extended to include three other quinones which, like benzoquinone, might on elementary principles be expected to have zero polarity.

Experimental

Materials, Apparatus, Methods, etc., and Results.--Benzo- and naphtha-quinones were purified by steam-distillation and recrystallisation twice from benzene, and had m. p. 116° and 125°, respectively. Chloranil, after recrystallisation from toluene, had m. p. 289-290 . Anthraquinone and acenaphthaquinone were first extracted and then recrystallised twice from benzene, and had m. p. $280-283^{\circ}$ and $260-261^{\circ}$, respectively. Starting materials were commercial specimens in each case.

Descriptions of apparatus, details of calculations, and definitions of symbols used here, are set out in refs. 4, 17, and 18, and relisted in ref. 19. Observations and results are given under usual headings in Tables 1-3.

Discussion

Apparent Polarisations and Moments.-Table 1 contains new total polarisation measurements for chloranil, l,4-naphthaquinone, anthraquinone, and acenaphthaquinone. Chloranil exhibits about the same difference between ${ }_{\infty} P_{2}$ and R_{D} as does benzoquinone; with anthraquinone the excess is less. In Table 2, apparent moments are evaluated by assuming that the distortion polarisations are $1 \cdot 05 R_{\mathrm{D}}$. Since Meredith et al. ${ }^{7}$ claim that the total polarisation of benzoquinone pelletted to maximum density is only $30 \cdot 1$ c.c., perhaps ${ }_{\mathrm{D}} P$ is approximately equal to R_{D}, in which case the three moments less than unity will be raised somewhat. Putting ${ }_{D} P=R_{\mathrm{v}}$ does not significantly affect the μ 's estimated for
${ }^{8}$ Jenkins, $J ., 1936,864,910$.
${ }^{\ominus}$ Frank and Sutton, Trans. Faraday Soc., 1937, 33, 1307.
${ }^{10}$ Coop and Sutton, J., 1938, 1269.
${ }_{12}^{11}$ Robertson, Proc. Roy. Soc., 1935, A, 150, 106.
${ }_{12}$ Swingle, J. Amer. Chem. Soc., 1954, 76, 1409.
${ }^{13}$ Kimura and Shibata, Bull. Chem. Soc. Japan, 1954, 27, 163.
${ }_{14}$ Le Fèvre and Narayana Rao, Austral. J. Chem., 1954, y, 135; 1955, 8, 39.
${ }_{15}^{15}$ Armstrong, Le Fèvre, and Le Fèvre, J., 1957, 371.
${ }^{16}$ Charney, J. Amer. Chem. Soc., 1961, 83, 578.
${ }^{17}$ Le Fè̀vre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261 ; ; (b) " Physical Methods of Organic Chemistry," Part 3 of "Technique of Organic Chemistry," ed. A. Weissberger, Interscience Publ., Inc., New York, 3rd edn., 1960.
${ }^{18}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
${ }^{19}$ Le Fèvre and Sundaram, J., 1962, 1494.

Table 1.
Dielectric constants, densities, refractive indexes, and Kerr effects of some quinones in benzene ${ }^{*}$ at 25°.

Solute: p-Benzoquinone.						Solute: Anthraquinone.			
$10^{5} w_{2} \ldots$	593	699	938	1142	$10^{5} w_{2} \ldots$	119	191	245	269
$10^{10} \Delta B$	11	13	15	19	$10^{5} \Delta n \ldots$	17	26	35	41
whence $\Sigma \Delta B / \sum w_{2}=1.720 \times 10^{-7}$					$10^{5} \Delta n^{2}$	51	78	104	122
					$10^{3} \Delta d \ldots$	36	64	78	82
Solute: Chloranil.					$10^{4} \Delta \varepsilon \ldots$	6	11	12	15
					$10^{10} \Delta B$	4	6	8	9

$10^{5} e_{2} \ldots$	412	720	986	1254	1702	1779
$10^{4} \Delta n \ldots$	3	5	7	9	12	13
$10^{4} \Delta n^{2}$	9	15	21	27	36	39
$10^{5} \Delta d \ldots$	192	333	455	583	793	826
$10^{4} \Delta \varepsilon \ldots$	17	30	42	53	71	75
$10^{10} \Delta B \ldots$	4	8	11	14	18	20

whence $\sum \Delta n / \sum w_{2}=0.144 ; \sum \Delta n^{2} / \sum w_{2}=0.431$; $\Sigma \Delta d / \Sigma w_{2}=0.3155 ; ~ \Sigma \Delta \varepsilon / \sum w_{2}=0.534 ;$

$$
\sum \Delta B / \sum w_{2}=3.28 \times 10^{-7}
$$

whence $\sum \Delta n / \sum w_{2}=0.071_{5} ; \sum \Delta n^{2} / \sum w_{2}=0.214_{5}$;
$\Sigma \Delta d / \sum w_{2}=0.4643 ; \sum \Delta \varepsilon / \sum w_{2}=0.420_{3} ;$ $\Sigma \Delta B / \Sigma w_{2}=1.09_{4} \times 10^{-7}$.

Solute: 1,4-Naphthaquinone.

$10^{5} w_{2} \ldots$	348	682	921	1164	1255	1299
$10^{4} \Delta n \ldots$	3	6	8	10	11	12
$10^{4} \Delta n^{2}$	9	18	24	30	33	35
$10^{5} \Delta d \ldots$	94	183	248	314	339	349
$10^{4} \Delta \varepsilon \ldots$	53	104	141	179	195	198
$10^{10} \Delta B$	12	23	30	39	43	44

whence $\Sigma \Delta n / \Sigma w_{2}=0.088 ; ~ \Sigma \Delta n^{2} / \sum w_{2}=0.263$;
$\Sigma \Delta d / \sum w_{2}=0.2694 ; \sum \Delta \varepsilon / \sum w_{2}=1.535 ;$

$$
\Sigma \Delta B / \Sigma w_{\mathbf{2}}=3.37 \times 10^{-7}
$$

$10^{5} w_{2} \ldots$	97	103	133	142	164	183
$10^{5} \Delta d \ldots$	27	32	39	45	-	55
$10^{4} \Delta \varepsilon \ldots$	212	239	275	329	-	405
$10^{10} \Delta B$	94	101	136	138	158	182
whence $\sum \Delta d / \sum w_{2}=$	$0.3005 ; ~$	$\sum \Delta \varepsilon / \sum w_{2}=22 \cdot 16 ;$				
$\sum \Delta B / \sum w_{2}=98 \cdot 31 \times 10^{-7}$.						
Solute: Acenaphthaquinone. Solvent: Quinoline. \dagger						
$10^{5} w_{2} \ldots$	432	597	678			
$10^{4} \Delta n^{2}$	16	26	29			
$10^{5} \Delta d \ldots$	117	164	180			

* When $w_{2}=0, \varepsilon=2.2725, d=0.87378,\left(n_{1}\right)_{\mathrm{D}}=1.4973$, and $B_{1}=0.410 \times 10^{-7}$.
\dagger When $w_{2}=0,\left(n_{1}\right)_{\mathrm{D}}=1 \cdot 6247_{5}$, and $d=1.0900$.

Table 2.
Total polarisations at infinite dilution, molar refractions and apparent dipole moments calculated from Table 1.

Solute	M_{2}	$\alpha \varepsilon_{1}$	β	$\gamma^{\prime} n_{1}{ }^{2}$	$\begin{aligned} & \infty P_{2} \\ & (\text { c.c. }) \end{aligned}$	$\begin{gathered} R_{\text {D }} \text { (c.c.). } \end{gathered}$	$\stackrel{\mu}{(\mathrm{D})}$ *
p-Benzoquinone \dagger.....	$108 \cdot 1$	0.529	$0 \cdot 2160$	$0 \cdot 107$	39.61	$30 \cdot 6$	$0 \cdot 60{ }_{5}$
Chloranil	245.9	$0 \cdot 420{ }_{3}$	0.5314	$0 \cdot 214_{5}$	58.72	$48 \cdot 7$	0.61
1,4-Naphthaquinone ...	158.2	$1.53{ }_{5}$	$0 \cdot 3083$	0.263	$83 \cdot 0$	$44 \cdot 6$	1.33
Anthraquinone ...	208.2	0.534	$0 \cdot 3611$	0.431	66.25	$61 \cdot 7$	$0 \cdot 27$
Phenanthraquinone \ddagger	208.2	$16 \cdot 815$	$0 \cdot 3470$	0.419	$704 \cdot 8$	$62 \cdot 1$	$5 \cdot 59$
Acenaphthaquinone .	182-2	$22 \cdot 16$	0.3439	1	$800 \cdot 2$	-	6.03
			$0 \cdot 2478{ }^{\text {d }}$	0.416 §		54•1 §	
Camphorquinone 1	166.2	$23 \cdot 67$	-0.484	$0 \cdot 231$	462.0	$46 \cdot 7$	$4 \cdot 49$

* Distortion polarisation being taken as $1 \cdot 05 R_{\mathrm{D}}$. \dagger Data recalc. from Le Fèvre and Le Fèvre. ${ }^{2}$ \ddagger Data recalc. from Caldwell and Le Fèvre. ${ }^{20}$ § Determined in quinoline. II Measurements in CCl_{4} by Mr. J. Eckert. ${ }^{21}$

Table 3.
Molar Kerr constants at infinite dilution, and exaltations in molar refractions calculated from Tables 1 and 2.

Solute	γ	δ	$\infty\left({ }_{m} K_{2}\right)$	$\underset{\text { (c.c.) }}{R_{\mathrm{D}} \text { (calc.) }}$	$10^{23} \Delta b^{*}$
p-Benzoquinone	0.024	$4 \cdot 20$	$38 \cdot 5$	26.8	$0 \cdot 452$
Chloranil	0.048	$2 \cdot 67$	53.7	$46 \cdot 1$	$0 \cdot 309$
1,4-Naphthaquinone	0.059	$8 \cdot 22$	97.3	$42 \cdot 1$	$0 \cdot 297$
Anthraquinone	0.096	8.00	$130 \cdot 4$	$57 \cdot 4$	0.511
Phenanthraquinone	$0 \cdot 140$	$170 \cdot 6$	2570	57.4	0.559
Acenaphthaquinone	-	$239 \cdot 8$	3169	$51 \cdot 4$	$0 \cdot 321$
Camphorquinone \dagger	0.053	246	294	$44 \cdot 1$	$0 \cdot 309$

* Calc. as $10^{23} \Delta b=0.11891$ (R_{D} obsd. $-R_{\mathrm{D}}$ calc.). \dagger See last footnote of Table 2.

1,4-naphthaquinone or the last three substances in Table 2. The present results for acenaphthaquinone (${ }_{\infty} P_{2}=800.2$ c.c., $\mu=6.03 \mathrm{D}$) are slightly lower than those recorded ${ }^{20}$ in $1939\left({ }_{(\infty} P_{2}=819 \cdot 1\right.$ c.c., $\left.\mu=6.08 \mathrm{D}\right)$. Regarding l,4-naphthaquinone, following through the argument used by Hampson and Weissberger ${ }^{22}$ on 1,4-dichloronaphthalene with $\mu(\mathrm{C}: \mathrm{O})$ instead of $\mu(\mathrm{C}-\mathrm{Cl})$ suggests that part of the 1.33 D is due to permanent polarity directed parallel to the 8,1 -line; the ${ }_{\infty} P_{2}$ of 83.0 c.c. now observed for this quinone compares fairly satisfactorily with $81 \cdot 0$ c.c. found by Soundararajan and Vold ${ }^{23}$ at 35°.

(I)

(II)

(III)

(IV)
x

Polarisabilities and Molar Kerr Constants.-By usual procedures, ${ }^{17,24,25}$ the principal polarisabilities (b_{1}, b_{2}, and b_{3}) of each of the seven quinones have been calculated from the longitudinal, transverse, and "vertical" polarisabilities ($b_{\mathrm{L}}^{\mathrm{AB}}, b_{\mathrm{T}}^{\mathrm{AB}}$, and $b_{\mathrm{V}}^{\mathrm{AB}}$) of the constituent bonds AB (where AB is $\mathrm{C}-\mathrm{H}, \mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}$, or $\mathrm{C}-\mathrm{Cl}$) ${ }^{24}$ combined with reasonable intervalency angles based upon those available from the X-ray analyses ${ }^{26}$ of benzoquinone and chloranil. When appropriate, values of b_{1}, b_{2}, and b_{3} for the $\mathrm{C}_{6} \mathrm{H}_{4}$ unit, obtained from the corresponding semi-axes for benzene ($1 \cdot 120, \mathrm{l} \cdot 120$, and 0.736 ; cf. ref. 27) by subtraction of the isotropic polarisability of two $\mathrm{C}-\mathrm{H}$ links, have been used with molecules containing fused-rings. Cognisance has been taken of the exaltations of polarisability revealed by comparing refractivities as observed and as computed from the link refractions of Vogel et al..28 (cf. Tables 2 and 3).

We discuss first the four quinones (I-IV) in which the following angles are assumed: $\mathrm{a}=116^{\circ}, \mathrm{b}=122^{\circ}, \mathrm{c}=110^{\circ}, \mathrm{d}=125^{\circ}, \mathrm{e}=123^{\circ}, \mathrm{f}=112^{\circ}, \mathrm{g}=117.5^{\circ}, \mathrm{h}=121.25^{\circ}$, $\mathrm{i}=120^{\circ}, \mathrm{k}=116^{\circ}, \mathrm{l}=122^{\circ}$, and $\mathrm{m}=120^{\circ}$. For reference, let the X axis join the carbonyl carbons, and the Y axis be at 90° to X in the planes corresponding to $\mathrm{C}_{(2)}, \mathrm{C}_{(3)}, \mathrm{C}_{(5)}, \mathrm{C}_{(6)}$ in (I); Z is perpendicular to X and Y. For a planar arrangement of p-benzoquinone (I) the bond polarisabilities quoted above give: $b_{1}=1.465$ (along $O X$), $b_{2}=0.997$ (along $O Y$), $b_{3}=0.610$, and ${ }_{\mathrm{m}} K$ calc. $=27.4 \times 10^{-12}$; with the exaltation divided equally between b_{1} and $b_{2}, \mathrm{~m} K$ calc. becomes 44.0×10^{-12}, while with the exaltation added wholly to $b_{1}, \mathrm{~m} K$ cal. is 67.6×10^{-12}. Both the last two estimates exceed the observed ${ }_{\mathrm{m}} K$. Analogies with other conjugated molecules ${ }^{24,29}$ strongly suggest that the exaltation of polarisability is correctly applied in the $O X$-direction; if this is so then the calculated and found ${ }_{\mathrm{m}} K$'s can be brought to equality either (a) if the electrostatic polarisability along $O Z$ is related to b_{3} differently from the ways in which the electrostatic polarisabilities along $O X$ and $O Y$ are to b_{1} and b_{2}, or (b) if the molecule carries a moment component μ_{Z} of 0.56 D. Suggestion (a) can be reconciled with Paoloni's proposal, ${ }^{5}$ with field-induced flexions of the Coop-Sutton ${ }^{10}$ type, and with the temperature-invariant θ_{3} terms of Le Fèvre and Le Fèvre; ${ }^{30}$ for example (writing a_{1}, a_{2}, and a_{3} for the electrostatic polarisabilities corresponding to b_{1}, b_{2}, and b_{3}; cf. p. 270 of ref. 17a), supposing that $a_{1} / b_{1}=$ $a_{2} / b_{2}=1$, but that $a_{3} / b_{3}=2$, gives $a_{3}=1.22$ and $\mathrm{m} K$ calc. $=38.0 \times 10^{-12}$ (observed,
${ }^{20}$ Caldwell and Le Fèvre, $J ., 1939$, 1614.
${ }^{21}$ Eckert, M.Sc. Thesis, Sydney, 1961.
${ }_{22}$ Hampson and Weissberger, J., 1936, 393.
${ }^{23}$ Soundararajan and Vold, Trans. Favaday Soc., 1958, 54, 1155.
${ }^{24}$ Le Fèvre, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.
${ }^{25}$ Eckert and Le Fèvre, J., 1962, 1081.
${ }^{26}$ Sutton, "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ., No. 11, 1958.
${ }_{37}$ Aroney and Le Fèvre, J., 1960, 3600.
48 Vogel, Cresswell, Jeffrey, and Leicester, J., 1952, 514.
${ }^{29}$ Bramley and Le Fèvre, J., 1960, 1820.
${ }^{30}$ Le Fèvre and Le Fèvre, J., 1959, 2670.
38.5×10^{-12}; of course, many ratios o ther than 1,1 , and 2 would also illustrate the point). Suggestion (b) could have substance if the molecule became cis-non-planar long enough for true orientation polarisation to manifest itself; if, as seems likely from the polarities of other conjugated ketones (e.g., piperitone ${ }^{31}$ for which $\mu=3 \cdot 7-3 \cdot 8 \mathrm{D}$), $\mu(\mathrm{C}: \mathrm{O})$ in quinones is between 3 and 4 D then the $\mathrm{C}=\mathrm{O}$ groups of benzoquinone need to be inclined to the XOY-plane by only $4-5^{\circ}$ to make ${ }_{\mathrm{m}} K$ calc. $={ }_{\mathrm{m}} K$ found (with a non-planarity of 4.5°, we have $b_{1}=1.917, b_{2}=0.996, b_{3}=0.615, \mu$ resultant $=0.56$, and $_{m} K$ calc. $=38.1 \times 10^{-12}$). However, as Le Fèvre and Le Fèvre ${ }^{2}$ failed to detect a significant change in ${ }_{\infty} P_{2}$ for benzoquinone in carbon tetrachloride with a temperature rise of 29°, and Coop and Sutton ${ }^{10}$ clearly demonstrated the temperature-invariance of $P_{\text {gas }}$, we prefer suggestion (a).

For chloranil (II), with the angles shown, $b_{\mathrm{L}}^{\mathrm{C}} \mathrm{Cl}=0 \cdot 32$, and $b_{\mathrm{T}}^{\mathrm{C}-\mathrm{Cl}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{Cl}}=0 \cdot 22$, the semi-axes forecast are $b_{1}=2 \cdot 222$ (along $O X$), $b_{2}=1.889$ (along $O Y$), and $b_{3}=1 \cdot 234$. The exaltation (Table 3) is 0.309 unit; this, added to b_{1} alone, leads to ${ }_{\mathrm{m}} K$ calc. $=62.8 \times 10^{-12}$, or divided equally between b_{1} and b_{2}, to $\mathrm{m} K$ calc. $=51.6 \times 10^{-12}$ (observed, 53.7×10^{-12}). Alternatively, it is possible that the $\mathrm{C}-\mathrm{Cl}$ bonds resemble in anisotropy those in vinylidene chloride ${ }^{32}$ (i.e., $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{Cl}}=0.399, b_{\mathrm{T}}^{\mathrm{C}-\mathrm{Cl}}=b_{\mathrm{V}}^{\mathrm{C}} \mathrm{Cl}=0 \cdot 185$), in which case we have $b_{1}=2 \cdot 216$, $b_{2}=2.071$, and $b_{3}=1.095$; these, with the exaltation applied to b_{1}, correspond to a ${ }_{\mathrm{m}} K$ of 80.0×10^{-12}, or, with $\Delta b / 2$ added to b_{1} and b_{2}, to a ${ }_{\mathrm{m}} K$ of $c a .73 \times 10^{-12}$. As with benzoquinone, it seems more reasonable that exaltation should operate most along the conjugated system, and thus supplement b_{1}. Harmony with experiment can be achieved if (a) the anisotropies of the electrostatic and electro-optical polarisabilities are different (for example, if $a_{1}=b_{1}=2.525, a_{2}=b_{2}=2.071, a_{3}=1 \cdot 445$, and $b_{3}=1.095,{ }_{\mathrm{m}} K$ calc. follows as 53.6×10^{-12}), or (b) if a permanent moment resultant acts parallel to b_{3} and $a_{\mathrm{i}} / b_{\mathrm{i}}$ is approximately $1 \cdot 1$ as usual (then with $\mu_{1}=\mu_{2}=0, \mu_{3}=0.445 \mathrm{D},{ }_{\mathrm{m}} K$ calc. is 53.7×10^{-12}). Unfortunately, no temperature-polarisation data are available for choranil, and choice between explanations (a) or (b) must be left open.

The structure reported in ref. 26 for anthraquinone, based on X-ray analysis, has $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles varying irregularly between 116.5° and 122.5°; because this situation may be due to lattice forces, we have retained for (III) as a solute only the value given (117.5) for $\mathrm{C}-(\mathrm{CO})-\mathrm{C}$. The four angles corresponding to h and the twelve corresponding to i (in III) have been taken as 121.25° and 120°, respectively. Computed semi-axes are $b_{1}=$ $2 \cdot 630, b_{2}=2 \cdot 582$, and $b_{3}=1 \cdot 416$. Adding the exaltation to b_{1} (along $O X$) leads to a predicted ${ }_{\mathrm{m}} K$ of 116.6×10^{-12}; this is about 10% less than that found. The discrepancy cannot be remedied by assuming that μ_{3} is non-zero, because so doing would further reduce ${ }_{\mathrm{m}} K$ calc.; small alternations of intervalency angles make no significant improvement. An explanation based on non-uniformity of the ratios $a_{1} / b_{1}, a_{2} / b_{2}$, and a_{3} / b_{3} again seems most probable, although with this molecule the last ratio cannot exceed the other two without diminution of ${ }_{\mathrm{m}} K$ calc. By illustration, let $a_{3} / b_{3}=1, a_{1} / b_{1}=a_{2} / b_{2}=1 \cdot 12_{25}$, then ${ }_{\mathrm{m}} K$ calc. would be 130.4×10^{-12}, i.e., the value from experiment. (If preferred, let $a_{3} / b_{3}=1 \cdot 1$-since we commonly adopt this ratio when ${ }_{\mathrm{D}} P$ and ${ }_{\mathrm{E}} P$ are unknown, believing that often ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{v}}$ and ${ }_{\mathrm{E}} P=0.95 R_{\mathrm{D}}$-then a_{1} / b_{1} and a_{2} / b_{2} need to be $1 \cdot 169$ to produce the same ${ }_{\mathrm{m}} K$ calc.) By elementary ideas of structure, anthraquinone (III) would be stiffer than benzoquinone and therefore more resistant to those vibrations of the $\mathrm{C}=\mathrm{O}$ groups required by the Coop-Sutton theory; ${ }^{\mathbf{1 0}}$ both the smaller apparent moment, and the signs that atomic polarisation is not excessively developed in the $O Z$ direction, are consistent with this; in contrast, it is difficult to see why orbital distortions ${ }^{5}$ should not be the same in molecules (I), (II), and (III).

Regarding naphthaquinone (IV), we have already noted the possibility of a permanent moment by induction (cf. ref. 22) acting in the $O Y$-direction. The calculated semi-axes are: $b_{1}=2.049$ (along $O X$), $b_{2}=1.788$ (along $O Y$), and $b_{3}=1.012$; to these must be added

[^1]an observed polarisability exaltation of $\Delta b=0.297$. If Δb wholly supplements b_{1}, then μ_{2} needs to be 1.58 D to produce the ${ }_{\mathrm{m}} K$ found by experiments; if Δb is divided equally between b_{1} and b_{2}, then a μ_{2} of 1.03 D is required. The last estimate is attractive since Hampson and Weissberger ${ }^{22}$ give 0.49 D for the moment of 1,4 -dichloronaphthalene, and $\mu(\mathrm{C}-\mathrm{Cl}): \mu(\mathrm{C}=\mathrm{O})$ is roughly $\mathrm{l}: 2$. The "anomalous" part of the apparent moment (1.33 D) of 1,4 -naphthaquinone may therefore be of the order of that (Table 2) recorded for anthraquinone (so that minor variations of our assumption that $a_{\mathrm{i}} / b_{\mathrm{i}}=1 \cdot 1$ are implied; but these are unpredictable).

We turn now to the three quinones of high polarity, phenanthraquinone (V), acenaphthaquinone (VI), and camphorquinone (VII). In (V) let all angles be 120°, leading to $b_{1}=2.597, b_{2}=2.615$, and $b_{3}=1.416 ; \Delta b$ is 0.559 , and $\mu_{\text {resultant }}$ is 5.59 D . Adopting $a_{\mathrm{i}} / b_{\mathrm{i}}=\mathrm{l} \cdot \mathrm{l}$ (for these polar molecules this ratio is unimportant because their molar Kerr constants are predominantly composed of θ_{2} terms) and distributing Δb equally over b_{1} and b_{2}, θ_{1} and θ_{2} become 25.7×10^{-35} and $591 \cdot 8 \times 10^{-35}$, respectively, and ${ }_{\mathrm{m}} K$ calc. $=$ 2597×10^{-12} (found, 2570×10^{-12}). Agreement between prediction and measurement is satisfactory:

In (VI) we assume that the angles marked n are 108°, and those at o and p both 120°; b_{1}, b_{2}, and b_{3} emerge as $2.531,2.241$, and $1.076, \mu_{\mathrm{res}}$ is 6.03 D , and Δb is 0.321 . If the exaltation increases b_{1}, then ${ }_{\mathrm{m}} K$ calc. is 3150×10^{-12} (compared with 3169×10^{-12} from experiment). Other ways of incorporating Δb in (V) and (VI) produce, of course, different ${ }_{\omega} K$'s; we submit, however, that the allocations made above are reasonable when judged against the structures involved.

Lastly, with camphorquinone (VII), from a " Barton " model we find angles as follow: $\mathrm{q}=103^{\circ}, \mathrm{r}=110^{\circ}, \mathrm{s}=125^{\circ}, \mathrm{t}=96^{\circ}$. Planes A and B intersect mutually at 112°. The $\mathrm{C}-\mathrm{C}$ bond Q lies in plane C. Arbitrary axes of reference are located with $O X$ and $O Y$ in plane $B, O X$ being parallel to the $\mathrm{CO}-\mathrm{CO}$ bond; $O Z$ is perpendicular to $O X$ and $O Y$. Calculation by the methods exemplified in refs. $17 b$ and 25 then gives principal axes and the direction cosines which define the positions of b_{1}, b_{2}, and b_{3} in the $O X, O Y, O Z$ framework, as shown.

Direction cosines with

$b_{1}=1.832$	0.8539	0.5018	0.1373	$\mu_{1}=2.25_{3}$
$b_{2}=-1.861$	-0.5200	0.8514	0.0687	$\mu_{2}=3.82_{3}$
$b_{3}=1.515$	-0.0230	-0.1525	0.9881	$\mu_{3}=0.68_{5}$

From Table 3 we have $\Delta b=0.309$. Adding this to b_{1} (which seems reasonable since conjugation must involve the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ unit) makes ${ }_{\mathrm{m}} K$ calc. $=297 \times 10^{-12}$, in satisfactory agreement with 294×10^{-12} observed. If Δb be ignored, ${ }_{\mathrm{m}} K$ calc. is 372×10^{-12}.

Awards by the University of Sydney of an F. A. Q. Stephens Research Fellowship to A. S. and an H. B. and F. M. Gritton Research Scholarship to K. M. S. S. are gratefully acknowledged.

School of Chemistry, University of Sydney,

[^0]: ${ }^{1}$ Hassell and Naeshagen, Z. phys. Chem., 1929, B, 6, 445.
 ${ }^{2}$ Le Fèvre and Le Fèvre, $J ., 1935,1696$.
 ${ }^{3}$ Hammick, Hampson, and Jenkins, Nature, 1935, 136, 990; J., 1938, 1263.
 ${ }^{4}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, pp. 21-25.
 "Paoloni, J. Amer. Chem. Soc., 1958, 80, 3879.
 ${ }^{6}$ Kofod, Acta Chem. Scand., 1953, 7, 928.
 7 Meredith, Westland, and Wright, J. Amer. Chem. Soc., 1957, 79, 2835.

[^1]: ${ }^{31}$ Le Fèvre and Maramba, $J ., 1952,235$.
 ${ }^{32}$ Bramley, Rao, Le Fèvre, and Le Fèvre, J., 1959, 1183.

